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Abstract: An accurate valence force field for zeolites is presented. The force field contains terms for bond stretches, bond 
angle bends, dihedral angles, and Lennard-Jones and electrostatic nonbonded interactions. Various treatments of the electrostatics 
and their effects on the modeling of silica sodalite are discussed. Theoretical infrared (IR) spectra, radial distribution functions, 
and mean-square displacements are compared to experimental data, demonstrating that the force field accurately reproduces 
the structure and dynamics of silica sodalite with use of energy minimization, normal mode analysis, and molecular dynamics 
techniques. 

I. Introduction 
Zeolites are porous crystals generally composed of Si, Al, and 

O. They contain channels of molecular dimension, with diameters 
of 3-10 A or more. These channels can host a variety of ions, 
water, and organic molecules. The size selectivity of the channels 
allows them to act as molecular sieves. Zeolites find wide use 
in industrial applications. For example, Zeolite A is useful in the 
separation of linear and branched alkanes. Zeolites are also highly 
active catalysts and are used in the conversion of methanol to 
gasoline and the conversion of toluene to benzene and p-xylene 
for the subsequent production of terephthalic acid. The com­
mercial value of zeolites provides motivation to understand their 
chemistry. This includes the structure and dynamics of the zeolite 
lattice, the manner in which ions and molecules interact with the 
lattice, and the actual reaction mechanisms involved in zeolitic 
catalysis. Molecular modeling, including molecular dynamics 
(MD) and Monte Carlo simulations, normal mode analysis, energy 
minimization techniques, and computer graphics, are well suited 
for studying many of the properties of zeolites. There has been 
considerable recent interest in applying molecular modeling 
techniques to the study of zeolites. There have been several recent 
studies on the dynamics of the zeolite framework.'"3 The ad­
sorption of alkanes in silicalite was studied by June et al.4 with 
Monte Carlo simulation. Lara and co-workers performed a MD 
study of methane in Zeolite-NaA.5 

To accurately model the structure and dynamics of the zeolite 
lattice we must have the correct force field parameters. Since 
the work on zeolite modeling is very recent, there is still much 
uncertainty in the valence potentials, Lennard-Jones terms, and 
charges that comprise a typical molecular modeling force field. 
This is really not surprising; molecular modeling of organic 
molecules has been an active area since the 1950's and there is 
still disagreement between the various force fields. Indeed, the 
MM2 force field,6 one of the most widely used, was recently 
revised.7 We felt that more accurate valence potentials could 
be developed for zeolite modeling. In addition, there was a need 
to investigate the various methods of treating the electrostatic 
interactions in the zeolite lattice. In prior work8 we investigated 
the stability of various forms of the silica sodalite cage and the 
interactions of ions with the aluminosilicate sodalite. Here we 
expand on our previous work to simulate the structure and dy­
namics of the zeolite lattice more extensively and accurately. 

II. Theoretical Methods 
A. Atomic Positions. We began with silica sodalite, the simplest 

zeolitic material to model. The truncated cuboctahedral sodalite 
structure unit is illustrated in Figure 1. The structure is built 
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up by the corner-sharing of SiO4 tetrahedra to form the 4- and 
6-rings of the cuboctahedra. In the silica sodalite framework, all 
the tetrahedral atoms are silicon, and the composition is SiO2. 
Atomic coordinates were taken from a combined single-crystal 
X-ray and powder neutron diffraction refinement of silica sodalite 
with encapsulated ethylene glycol.9 The reported unit cell is cubic, 
ImIm, with a = 8.83 A. This implies that all the silicons and 
oxygens are equivalent. The refinement suggests that there is some 
type of inherent structural disorder in the crystal. High-resolution 
29Si NMR of this material reveals three peaks.10 This indicates 
that there are actually three crystallographically distinct silicons 
and the true symmetry is lower. Apparently the deviation from 
cubic symmetry is slight enough that it is not discernable in the 
diffraction experiment. We assume that the ethylene glycol, which 
is not included in the simulation, does not have a major effect on 
the silica sodalite structure. 

B. Geometry of the Tetrahedra. Figure 2 illustrates the ge­
ometry of the tetrahedra in the sodalite 4-ring using the termi­
nology of Depmeier.1' For each Si there are six corresponding 
O-Si-O angles. Two of these angles, termed a, are involved in 
the 4-rings. The other four angles (a') are part of 6-rings. In 
the sodalite family the a angle ranges from about 106° to 120° 
and generally increases with the aluminum content. The tilt angle 
ip is 0° in silica sodalite, resulting in a planar 4-ring. This is 
unusual, because in most of the family of sodalites <p ranges from 
10° to 40°. When <p is non-zero, the 4-ring is puckered, with 
alternating oxygens above and below the plane of the Si. 

C. Simulation Procedure. The simulation lattice consists of 
a 2 X 2 X 2 arrangement of unit cells, making the total system 
a cube of 17.66 A on each side. The system contains 96 Si and 
192 0 atoms. Periodic boundary conditions were used to simulate 
the effects of the infinite framework. The nonbonded interatomic 
interactions were evaluated for all atoms within a cutoff radius 
of 8.82 A. The electrostatic interactions were treated in various 
ways that will be discussed in detail. Nonbonded Lennard-Jones 
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Figure 1. The basic silica sodalite structural unit. 
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Figure 2. The 4-ring of silica sodalite illustrating the terminology de­
scribed in the text. 

and electrostatic interactions were not calculated for atoms that 
were bonded (1-2 interactions) or atoms involved in a bond angle 
(1-3 interactions), as these nonbonded terms are assumed to be 
accounted for by the bond stretch and bond angle bend potentials. 
Energy minimizations were performed with conjugate gradients.12 

For the MD simulations the equations of motion for the system 
were integrated wiwth use of the leap-frog algorithm13 in a 
modified version of the program MOLSIM.14 A MD time step of 
1.0 fs was used. Each simulation was equilibrated to 300 K for 
20 ps or more by loosely coupling the system to a temperature 
bath15 with a temperature relaxation time of 1.0 ps. Following 
equilibrium, trajectories were computed for an additional 20 ps, 
during which the atomic positions and velocities were saved for 
later analysis. 

If the nonbonded interactions are simply truncated at the cutoff 
distance, there is a large discontinuity in the potential. The 
discontinuity causes a disastrous lack of energy conservation in 
MD and also hinders convergence in energy minimizations. There 
are several methods that can be used to smooth the potential and 
forces to zero at the cutoff distance. We have used the shifted 
force potential.16 With the shifted force potential, the total energy 
of the system in the MD simulations showed no drift and had an 
average root-mean-square (RMS) fluctuation of 0.6-0.7% of the 
kinetic energy fluctuations over the entire run, indicating excellent 
energy conservation. 
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Si-O-Si Angle in Degrees 
Figure 3. The ab initio Si-O-Si data points and potential fit of Grigoras, 
compared to the potential fit used in this work. 

D. The Force Field. The force field is represented by a sum 
of potential energy terms 

= Vu1 'angles "*" + v, Dns ' Y Lennard-Jones ' v electronics 

(D 
The values of the force parameters that enter into the potential 
energy terms can be obtained by a variety of methods. Quantum 
mechanical calculations on small molecules that mimic the zeolite 
structure can be used to determine force constants, equilibrium 
geometries, and charge densities. Fitting the force parameters 
to experimental data, such as IR frequencies and crystal structures, 
is also possible and has been used, in part, to derive the force field 
parameters presented in this work. For example, experimental 
structural data on a wide range of silicates suggest the following 
values and ranges for the geometric parameters:17 

Si-O bond « 1.605 A (range 1.57-1.72 A) 
0-Si-O angle « 109.5° (range 98-122°) 
Si-O-Si angle « 140° (range 120-180°) 

(i) Bond Stretch. The Si-O bond stretch is modeled with use 
of a simple harmonic potential 

V(r) = (kr/2)(r-r^ (2) 

where kr = 597.32 kcal/(mol-A2) and r^ = 1.61 A. A considerable 
range of theoretical values have been reported for the equilibrium 
Si-O bond length, in addition to the experimentally observed 
values. SCF calculations18 of the equilibrium bond length range 
from «1.602 to 1.657 A. We have found the value of r^ = 1.61 
A to most accurately model the structure and dynamics of silica 
sodalite. This is very close to the crystallographically observed 
value and within the range of the theoretical calculations. The 
effect of various equilibrium bond lengths will be discussed in detail 
in a later section. 

(ii) Bond Angle Bends. The O-Si-O bond angle bend is also 
modeled with a harmonic potential: 

v(6) = (k,/2)(e - e^y (3) 

We have used 0^= 109.5°, the equilibrium angle suggested by 
observation, and a force constant of k6 = 138.12 kcal/(mol-rad2). 

The Si-O-Si bond angle bend is highly anharmonic." This 
angle is also known to vary over a range of =60° in silicates, three 
times the amount of variation found in the O-Si-O angle. Thus, 
we feel that having the correct Si-O-Si potential is very important 
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to the simulation. On the basis of SCF calculations with an 
3-21G* basis set, Grigoras" has proposed a potential containing 
a quadratic and cubic term 

W) = (kn/2)(8 - 6^y - (*„/2W ' <W3 (4) 

where kfl = 12.52 kcal/(mol-rad2), kn = 21.32 kcal/(mol-rad3), 
and 0„ = 149.5° (Figure 3). Grigoras demonstrated that this 
potential would accurately reproduce the structure of siloxanes 
in molecular mechanics. Although this potential is a close fit to 
the ab initio energy over most of the range of the angle, it fits 
poorly in the 170-180° range. Because the Si-O-Si angle can 
become linear during the MD simulations, we found it necessary 
to more accurately fit the ab initio data. The new potential is 

V(6) = 
(kn/2)(o - e^y - (kn/2w - »„)' + (k„/2)(e - eny (5) 

where kn = 10.85 kcal/(molTad2), kn = 22.72 kcal/(mol-rad3), 
kn = 13.26 kcal/(mol-rad4), and 0«, = 149.5° (Figure 3). This 
potential gives an excellent fit to the entire range of ab initio data. 
The equilibrium bond angle of 149.5° is large when compared 
to the value of 140° suggested by Liebau. However, the exper­
imentally observed angle in siloxane (144.4°) may better represent 
the equilibrium value. SCF calculations with various basis sets 
give values for the equilibrium Si-O-Si angle ranging from 
124.53° to 180.00.20 Clearly, the shallow potential well of this 
angle makes it a difficult bond to characterize and the ab initio 
potential calculated by Grigoras seems reasonable. For example, 
the barrier to inversion of the Si-O-Si bond angle has been 
determined by Raman spectroscopy to be 0.32 kcal/mol.21 The 
ab initio calculations by Grigoras give a barrier of 0.35 kcal/mol, 
in excellent agreement with the experiment. 

(iii) Si-O Bond/Si-O-Si Bond Angle Coupling. In silicates the 
Si-O bond is known to lengthen as the Si-O-Si bond angle be­
comes smaller.22 The exact relationship between the bond length 
and bond angle depends on the compound and also varies with 
the amount of Al in the lattice. Hill and Gibbs23 have proposed 
the following relationship between the bond and the bond angle 
in silicates: 

rsi_o = 1.53 - 0.08/cos (0SKwi) (6) 

Inspection of the geometry of the crystal structure of silicalite,24 

a zeolite similar to silica sodalite in that it contains only Si and 
O, results in a slightly different relationship: 

/•Si_o = 1.46 - 0.11 /cos (0SKWi) (7) 

To induce the proper change in the Si-O bond with the Si-O-Si 
angle in our simulations, we incorporated a Urey-Bradley term 
based on the Si-Si nonbonded distance for each Si-O-Si angle 

V\r) = (4,/2Xr81-S1 - r*,)2 (8) 

where kr = 54.6 kcal/(mol»A), rSi_Si is the distance between the 
two Si atoms in the Si-O-Si bond angle, and r^ = 3.1261 A, the 
distance observed in the silica sodalite crystal structure. In addition 
to reproducing the correct dynamic behavior of the lattice, we have 
found that the Urey-Bradley term is needed to obtain the correct 
separation between the frequencies of the symmetric and asym­
metric Si-O stretches. 

The Si-O-Si angle exhibits a large equilibrium value when 
compared to the 110-114° C-O-C angle found in dimethyl ether. 
One possible cause of the large angle is the overlap of Si 3d and 
O 2p orbitals. An alternate explanation is that the large Si-O-Si 
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angle is due to steric repulsion between the Si atoms which are 
in close contact at =3.12 A. In our simulation nonbonded and 
electrostatic interactions are not calculated between 1 and 3 
neighbors. Therefore, the Urey-Bradley term may represent this 
Si-Si repulsion. 

(iv) Dihedral Angle. The torsional potential for the Si-O-Si-O 
dihedral angle is a periodic function with a 3-fold barrier: 

K($) = (Jfc*/2)(1.0 + cos(3*)) (9) 

It is common in a valence force field of this type to assume that 
torsions appropriate for large systems can be derived from cal­
culations on small, representative molecules.25 In zeolites we are 
interested in the energy of rotation about an Si-O bond in an 
essentially infinite arrangement of SiO4 tetrahedra. An ab initio 
calculation of the actual torsional potential in the full zeolite lattice 
is currently not possible at a reasonable level of sophistication. 
We must therefore assume that the potential can be derived from 
compounds such as hydroxysiloxane (H3Si-O-SiH2-OH) that 
contain a similar rotatable Si-O bond, with H satisfying the 
valence on Si, rather than O, as in a zeolite. 

Abraham and Grant20 investigated the rotation about the Si-O 
bond in hydroxysilane using an ST0-3G* basis set. They found 
a single barrier of 0.68 kcal/mol with a minimum at 0° when the 
Si and O are eclipsed. Grigoras19 has also investigated the ro­
tational barrier about the Si-O bond in a variety of siloxane 
compounds at the 3-21G* level. The torsional barriers for the 
molecules that exhibit a similar minimum at 0° range from 0.7 
to 1.0 kcal/mol. It appears that the main feature of the torsional 
energy is an «=0.7 kcal/mol minimum when the Si and O are 
eclipsed. In adapting this potential to the zeolite, we must consider 
that O's occupy positions in the zeolite satisfied by H's in hy­
droxysilane. We would expect a similar interaction between Si 
and each of these O's, resulting in a 3-fold barrier with minima 
at the eclipsed conformations. The minima of the torsional po­
tential are in agreement with the Im3m crystal structure of silica 
sodalite, where the dihedral angles are 0°, 120°, and 240°. We 
have used a force parameter, kt = -0.7 kcal/mol, consistent with 
both of the ab initio calculations. 

Because little distinction can be made between 1-4 nonbonded 
interactions and explicit torsional potentials, there is a possibility 
that some nonbonded interactions are being "double counted". 
There is also a possibility that the torsional potential is "correcting" 
for some unknown inaccuracy in the Lennard-Jones terms, rather 
than being an intrinsic feature of the Si-O bond. However, the 
results of this and other simulations38'40 do not suggest that the 
Lennard-Jones terms are in error. In addition, the fact that the 
ab initio torsional potential is needed to obtain the correct structure 
(see below) gives further justification to its use. The clarification 
of this matter will probably require an ab initio determination 
of the torsional potential in the full zeolite lattice. 

As we have previously discussed, both observation and theo­
retical calculations indicate that it is possible for the Si-O-Si angle 
to become linear. Since the potential for the Si-O-Si bond angle 
is continuous through 180°, a linear bond does not in itself present 
a computational problem. However, is a Si-O-Si angle was to 
become linear, the dihedral angle containing the linear angle would 
not be uniquely defined, resulting in a discontinuity in the potential. 
In practice, the atoms must be linear to the accuracy of the 
calculation (double precision) for the dihedral angle to be com­
puted incorrectly. Although this appears to be highly improbable, 
a different problem does occur. 

When the Si-O-Si angle is close to linear, it is possible for it 
to invert, causing a discontinuity in the torsional potential that 
contains the Si-O-Si angle. Consider a dihedral angle that is 
in a minimum energy conformation at ~0°. If in the next step 
of the MD or energy minimization the related Si-O-Si was to 
invert (Figure 4), the dihedral would now be in a high-energy 
conformation at approximately 180°. To avoid this discontinuity, 

(25) Hopfinger, A. J.; Pearlstein, R. A. / . Comp. Chem. 1984, 5,486-499. 
(26) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Sw-
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O-Si-O-Si Dihedral - 0.0° 

O-Si-O-Si Dihedral - 180.0° 
Figure 4. The inversion of the Si-O-Si angle and the effect of inversion 
on the associated dihedral angle. 
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Figure 5. The potential surface of the torsional potential coupled to the 
switching function. The torsional potential is a periodic function that 
exhibits minima at 0°, 120°, and 240°. The switching function smooths 
the torsional energy from its full value to 0 as the related Si-O-Si angle 
changes from 170° to 180°. 

the torsional potential must be coupled to the related Si-O-Si 
angle, so that the torsional energy goes smoothly to zero as the 
Si-O-Si bond becomes linear. We have coupled the torsion to 
a switching function26 based on the Si-O-Si angle: 

K(*,0) = V(Q)S(B) (10) 

where the switching function is defined as 

S(B) = (0off - 0)2(0off + IB - 30o„)/«>off - 6m)3 (11) 

170° < B < 180°; B0n = 170°; Bot! = 180° 

S(S) = I 0<17O° (12) 

Coupling the torsion potential to the switching function causes 
the torsional energy to decrease from its full value to zero as the 
Si-O-Si angle goes from 170° to 180° (Figure 5). In addition 
to making the potential continuous, smoothing the dihedral to zero 
for the linear angle seems physically realistic. However, our 
current use of the switching function is strictly empirical. 

(v) Lennard-Jones Terms. Nonbonded interactions were rep­
resented in part by a Lennard-Jones 6-12 potential 

V(r) = B/rl2-A/r6 (13) 

where r is the interatomic distance. Values for the Lennard-Jones 
A and B parameters for Si and O were taken from the MM2 force 
Held and are the same as those used in our previous study8 of 
zeolites. Lennard-Jones parameters for the Si-O interactions were 
derived from the usual geometric mean combining rules, i.e. A,, 

(vi) Electrostatic Interactions. Nonbonded electrostatic in­
teractions were modeled by a Coulomb potential 

nr) = qflt/*r (14) 

where qt and qt represent the charges of the atoms, r is the in­
teratomic distance, and « is the dielectric constant. The elec­
trostatic interactions are longer range, and can be more important, 
than the Lennard-Jones terms. 

The charges of the zeolite atoms can have an effect both on 
the structure of the zeolite and on the way ions and molecules 
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interact with the framework. In silica sodalite, the charges arising 
from the different electronegativities of the silicon and oxygen 
must be evenly distributed, with the oxygens necessarily having 
-0.5 the silicon charge. This relationship, in addition to the 
absence of Al and charge-balancing cations, simplifies the study 
of the electrostatic interactions. The atomic charges for silicates 
have been calculated by a variety of methods. Examples of the 
proposed charge on Si include 0.427 and 1.9122 (electronegativity 
equilization), 1.0-1.6428 (CNDO and INDO semiempirical), and 
0.69-1.119 (SCF/Mulliken). It is evident that there is a wide range 
of possible values for the Si charge. We have used a Si charge 
of +1.1 as in our previous study, a reasonable value that is well 
within the range of the cited calculations. 

In addition to the disagreement in the values of the atomic 
charges, it is also not known which form of electrostatic interaction 
potential would give the best results in zeolite modeling. The 
representation of the atoms in the system as point charges is, of 
course, an approximation. In silica sodalite this approximation 
is good for the electropositive Si but poor for the more diffuse, 
polarizable O atoms. The point charge model also ignores the 
possibility that a significant amount of the electron density may 
lie between the atoms rather than at the atomic centers. A more 
detailed treatment of the electrostatic interactions might entail 
the use of simulated lone pairs on the oxygens and the interaction 
between bond dipoles, as in the MM2 force field.6 The large 
numbers of atoms that are generally needed for zeolite modeling 
compel us to avoid the increased amount of computation that these 
addition interactions would require if they are not necessary. 

In molecular modeling, it is also usually assumed that non-
bonded interactions, both Lennard-Jones and electrostatic, are 
simply pair-wise additive. Many-body effects and polarization 
are generally not explicitly included in the simulation. Since 
polarization always diminishes the electrostatic interactions, the 
effects of polarization are sometimes crudely approximated by 
using a dielectric constant that is greater than 1. For organics, 
a dielectric constant of 3.0-3.5 is often suggested.2' Grigoras 
has found that a dielectric constant of 5-8 is needed for the 
modeling of siloxanes, depending on whether the charges are 
derived by ab initio or extended Huckel methods.19 By varying 
the dielectric constant we are effectively varying the charges on 
the atoms. This allows us to easily simulate how different charges 
would affect the system. The simulations were repeated with 
dielectric constants of 1, 2, and 5. 

The discontinuity at the cutoff distance can cause difficulties 
with convergence in energy minimizations and energy conservation 
in MD. Initial simulations, without the shifted force potential, 
would invariably diverge. The shifted force potential, and the 
incorporation of a cutoff distance, is a useful and necessary ap­
proximation that allows the inclusion of the electrostatic inter­
actions in the simulation. However, this also introduces some error 
because the electrostatic interactions beyond the cutoff distance 
are assumed to be zero. 

The Ewald summation was used to determine what effect the 
inclusion of the long-range electrostatics would have on the sim­
ulation.30 In the Ewald summation the electrostatic interactions 
are divided into two rapidly convergent sums, one of which is 
evaluated in real space while the other is summed in reciprocal 
space: 

1 N N I « 

L t J Y |nl=0 

erfc (ic|ry + n|) 

(1 / i rL 3 ) £?tf<(47r 2 / i t 2) exp(-fc2/4(c2) cos 
MO 

»•'</)) (15) 
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Press: New York, 1973; p 339. 
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ford University Press: Oxford, 1987; pp 155-162. 
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Table I. Force Field Parameters 

Valence Potential Parameters 
Si-O Bond Stretch 

k, = 597.32° r „ -1 .61* 

0-Si-O Bond Angle Bend 
*, = 138.12' „ „ 0M = 109.5'' 

Si-O-Si Bond Angle Bend 
*„ = 10.85* kn = 22.72' k„ = 13.26' 

Urey-Bradley Term 
*, = 54.6" 

Si-O-Si-O Torsion 
K3 = -0.70« 

Nonbonded Potential Parameters 

(L, = \A9.S* 

r^ = 3.1261* 

atom A* B1 charge 
Si 
O 

2514.1821 
192.8247 

9730572.0000 
158994.0156 

1.1 
-0.55 

"kcal/(mol-A2). 'A. <kcal/(mol-deg2). 'deg. «kcal/(mol-deg4). 
'kca!/(mol-deg6). *kcal/mol. * kcal-A«/mol. 'kcal-A12/mol. 

This convergence of the two sums is controlled by the Ewald 
parameter K and the range of fc-vectors over which the reciprocal 
space sum is calculated. A value of 5.6/L, where L is the length 
of the periodic box, is usually suggested for K. This was found 
to be the optimal value for our simulations. The reciprocal space 
summation was over all ^-vectors, k = 2ir/L(n„ ny, nz), such that 
«x, tiy, and Ti1 are less than 5 and (nx

2 + ny
2 + nz

2) < 27. The 
reciprocal space sum includes interactions of the charge of an atom 
with itself. This is corrected by subtracting from the energy the 
self term 

(VV^)Ef,2 (16) 

In addition, it is necessary to correct the reciprocal sum for the 
interactions between 1-2 and 1-3 neighbors.31 These interactions 
are simply left out of the direct space sum. To correct the re­
ciprocal space sum a term of the form 

\""( erf (K|ry|) \ 
(17) 

for the interactions of all 1-2 and 1-3 neighbors /' and j is also 
subtracted from the potential energy. The Ewald summation is 
computationally expensive. Since the summation system is cubic, 
some computational simplifications can be made. However, the 
Ewald summation still increases the amount of cpu time needed 
for the calculations by approximately 50%. 

The complete set of force field parameters is given in Table 
I. 

III. Results 

A. Energy Minimizations, (i) Overall Structure. An important 
measure of the accuracy of the force field is its ability to duplicate 
the silica sodalite crystal structure. For each treatment of the 
electrostatics, minimizations were performed with use of the crystal 
structure as the initial atomic coordinates. The systems were 
minimized by using conjugate gradients until the gradient norm 
was less than 1.0 e~7-kcal/(mol-A). Table II shows the values of 
the structural parameters of the minimum energy geometry and 
the percent difference in energy between the initial crystal structure 
and the minimized geometry, for each of the different treatments 
of the electrostatics. 

In all cases, the minimized geometries are very close to the 
crystal structure. From the values of the structural parameters, 
we can see that a dielectric constant different than unity gives 
a small improvement in the geometry. The experimentally ob­
served Si-O bond length is attained with a dielectric constant of 

(31) Heyes, D. M. CCP5 Quart. 1983, S, 29-36. 

Table II. Optimized Geometries and the Percent Change in Energy 
between the Initial and Final Coordinates for the Different 
Treatments of the Electrostatics" 

electrostatics Si-O 0-Si-O Si-O-Si AE 
Ewald 
t = 1 
t = 2 
i = 5 

expt 

1.585 
1.585 
1.586 
1.587 

1.587 

109.96 
110.11 
110.52 
110.76 

110.3 

160.05 
159.89 
159.48 
159.24 

159.7 

0.003 
0.003 
0.011 
0.078 

° Bond lengths in A, angles in deg. 

Table III. Optimized Geometries and the Percent Change in Energy 
between the Initial and Final Coordinates for Different Values of r«, 
in the Si-O Bond Potential" 

Si-O 0-Si-O Si-O-Si AE 
1.59 
1.60 
1.61 
1.62 

expt 

1.583 
1.584 
1.585 
1.586 

1.587 

109.28 
109.68 
110.11 
110.55 

110.3 

160.72 
160.32 
159.89 
159.45 

159.7 

6.650 
2.310 
0.003 
0.669 

° T01, and bond lengths in A, angles in deg. 

5. The correct angles are given by a dielectric constant of between 
1 and 2. However, such small differences in the geometry can 
also easily be effected by a slight variation in the other force field 
parameters, and are not significant. The change in energy on 
minimization is also very slight; the largest change in energy is 
less than 0.1% of the total energy of the system. The inclusion 
of the long-range forces with the Ewald summation has little effect 
on the structure and gives a structure that is very similar to that 
obtained with a Coulomb potential and a dielectric of 1. The 
results indicate that the geometry of the system is primarily 
determined by the valence potentials and is relatively insensitive 
to the choice of atomic charges or charge interaction. 

We have presented results for minimizations starting with the 
crystal structure. The same geometries are obtained if mini­
mizations are performed on configurations taken from the dy­
namics trajectories or those that had the atomic coordinates 
randomly displaced. No alternative energy minima were found. 

(ii) The Si-O Bond. The Si-O-Si bond angle is very sensitive 
to the length of the Si-O bond. For a fixed Si-Si distance, a 
change of 0.01 A in the Si-O bond results in an «3° change in 
the Si-O-Si angle. The Si-O-Si angle is thus also very sensitive 
to the value of the /•„, force parameter for Si-O bond stretch. 
Because of the importance of the Si-O /•„ distance and the un­
certainty in its optimal value, we performed energy minimizations 
using a range of Si-O /•„, values. Note the value chosen for /̂ q 
is not necessarily the value that the Si-O bond will assume in the 
energy-minimized structure, due to the interaction with the other 
terms in the force field. Table III shows the change in the ge­
ometry of the energy-minimized structures as the equilibrium bond 
length is changed from 1.59 to 1.62 A. 

The Si-O /•„, of 1.59 A results in an a angle that is less than 
a', in disagreement with the crystal structure. The change in the 
a angle with /•„, suggests that a value between 1.61 and 1.62 A 
would be appropriate. The percent change in energy of the 
minimized structures also indicates that the /•„, value of 1.61 A 
causes the least amount of strain in the geometry. Therefore, the 
optimal rn value for the Si-O bond is very close to 1.61 A. 

The consequence of increasing the equilibrium bond length is 
to increase the Si-O bond energy, causing strain about the tet-
rahedra. An 0.01-A change in the equilibrium bond length results 
in a large change in the Si-O potential energy compared to the 
other energy terms. The strain caused by the longer Si-O bond 
can be relaxed by a rotation which changes the tilt angle <p. When 
the torsional potential is not used in the energy minimization the 
structure develops a twist angle of 12-13°. Thus, the torsional 
potential predicted by the ab initio calculations is needed in the 
force field to maintain the correct tilt angle (0°) in silica sodalite. 
The increase in potential energy associated with the longer 
equilibrium bond length is similar to the situation that would occur 

file:///A9.S*
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Table IV. Results of Simulation Dynamics: Mean Square 
Displacements (MSD) of the Atoms from Their Equilibrium 
Positions, Isotropic Coefficients, and Root-Mean-Square (RMS) 
Differences between the Average Dynamic Positions and the Crystal 
Structure 

Ewald 
t = 1 
( = 2 
( = 5 

expt 

Ewald 
( = 1 
« = 2 
« = 5 

expt 

MSD" 

0.0040 
0.0041 
0.0063 
0.0116 

0.0163 

0.0121 
0.0125 
0.0182 
0.0284 

0.0369 

isotropic coeff 

Silicon 
0.51 
0.51 
0.53 
0.46 

Oxygen 
0.22 
0.21 
0.21 
0.23 

0.79 
0.77 
0.78 
0.72 

0.76 
0.78 
0.67 
0.42 

RMS* 

0.0021 
0.0023 
0.0051 
0.0106 

0.010 
0.009 
0.010 
0.018 

when Al is present in the lattice, due to the longer Al-O bond 
compared to Si-O. Experimentally, it has been observed that as 
the amount of Al in the sodalite increases, <p also generally in­
creases. For example, a close relative to silica sodalite, TMA 
sodalite,32 has a Si/Al ratio of 5 and a tilt angle of «8° . The 
change in <p when Al is introduced into the zeolite should provide 
additional information for calibration of the torsional barrier. 

B. Molecular Dynamics, (i) Mean-Square Displacements and 
Detailed Motion of the Oxygens. The effects of the electrostatic 
interactions on the dynamic behavior of the zeolite can be seen 
by examining the mean-square displacements (MSD's) of the 
atoms from their equilibrium positions. The MSD's have been 
calculated from the 20-ps MD trajectories, sampled every 0.1 ps. 
The results, presented in Table IV, are the average for all the Si 
and O atoms in the system. Also given in Table IV are the 
isotropic coefficients.33 Both of the isotropic coefficients are equal 
to one if the atomic motion is isotropic. As the atomic motion 
becomes more anisotropic, the coefficients approach zero. The 
MSD's of the O atoms are approximately twice that of the Si 
atoms, and the isotropic coefficients for the O atoms are smaller, 
indicating that the O atoms undergo a larger and more anisotropic 
motion. Both of these results agree with the reported crystal data.9 

The calculated MSD's are smaller than the reported experi­
mental values. However, there is disorder in the crystal that would 
tend to raise the experimental values. In addition, any uncertainty 
in the crystal refinement will also increase the MSD's. The 
accuracy of the MSD's is generally much lower than the accuracy 
of the structure. Thus, it is not surprising that the calculated 
MSD's are smaller than the experimental values. The MSD's 
increase as the dielectric constant is increased. Clearly, by re­
ducing the strength of the electrostatic interactions the atoms are 
allowed more motion. This is in agreement with a similar 
treatment of dielectric effects in proteins.34 

The experimentally determined thermal ellipsoids of O in Si-
O-Si bonds are highly anisotropic, and indicate that the larger 
motion is perpendicular to the Si-Si vector, with smaller motion 
parallel to the Si-Si vector. Figure 6 is a scatter plot of the 
positions of the O atoms of a 4-ring in relation to the positions 
of the Si during the trajectory. The origin of the plot is the center 
of the Si-Si distance with the Si-Si vector perpendicular to the 
plane of the paper. The x coordinate indicates motion in and out 
of the ring with the center of the 4-ring to the left. The y co­
ordinate indicates motion above and below the plane of the ring. 
The average position of the O's (and/or the crystal position) is 
indicated with the O. Note that since we are plotting the O 

(32) Baerlocher, v. C; Meier, W. M. HeIv. Chim. Acta 1969, 52, 
1853-1860. 

(33) Northrup, S. H.; Pear, M. R.; McCammon, J. A.; Karplus, M. J. 
MoI. Biol. 1981, 153, 1087-1109. 

(34) Loncharich, R. J.; Brooks, B. R. Proteins: Struct., Fund., Genet. 
1989, 6, 32-45. 
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Figure 6. Scatter plot of the positions of the O relative to the Si in a 
typical 4-ring for motion in and out and above and below the plane of 
the ring. 
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Figure 7. Scatter plot of the positions of the O relative to the Si in a 
typical 4-ring for motion parallel and perpendicular to the Si-Si vector. 

position in relation to the Si's which are also moving, the fluc­
tuations do not exactly correspond to the MSD's of the atoms. 
Still, this plot gives a good indication of the average motion of 
the O's. Notice that the displacements toward and away from 
the center of the ring are similar to those above and below the 
plane of the ring. This is consistent with the experimental thermal 
ellipsoids. At various times during the simulation the O can be 
found inside the ring, which in some cases is due to the inversion 
of the Si-O-Si bond. 

Figure 7 is another plot of the O motion, where the plane of 
the 4-ring is in the paper, the x direction indicates motion of the 
O's perpendicular to the Si-Si vector, in and out of the ring, and 
the y direction is motion parallel to the Si-Si vector. Again the 
O indicates the crystal position of the O. The motion perpendicular 
to the Si-Si vector is much less than the parallel motion, consistent 
with the experiment. 

Also included in Table IV is the RMS deviation of the simulated 
structure from the crystal coordinates. To obtain the RMS de­
viations, the trajectories were sampled in the same manner as the 
MSD's, and the average structure was calculated. The average 
structure was then aligned with the crystal structure35 and the 
RMS difference was calculated. The values of the RMS deviations 
presented are averages over all the Si and O in the lattice. Similar 
to the MSD's, the trend is for the RMS deviations to increase 
as the dielectric constant is increased. However, in all cases, the 
average dynamic structure is very close to that of the crystal, 
indicating that there is minimal distortion of the lattice during 
the molecular dynamics simulations. 

(35) McLachlan, A. D. J. MoI. Biol. 1979, 128, 49-79. 
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Figure 8. Curves representing the average Si-O bond length versus the 
Si-O-Si bond angles that are observed during the simulation. Plotted 
for comparison are the relationship proposed by Hill for silicates and the 
curve derived from the silicalite crystal structure. 

Table V. IR Frequencies (cm-1) of Silica Sodalite Calculated from 
MD Simulation and Normal Mode Analysis Compared to 
Experimental Values4 

MD 
ring b 
O-Si-O 456 
Si-O sym 776 
Si-O asym 1106 

NMA expt 
302 289 
481 450 
796 787 

1108 1107 
"Calculated with the Ewald summation. * Frequency cannot be re­

liably determined. 

(ii) Si-O Bond Length/Si-O-Si Bond Angle Coupling. Figure 
8 is a plot of a least-squares fit of the average Si-O bond lengths 
for each of the values of the related Si-O-Si bond angle that 
occurred during the MD simulations. The values were calculated 
from the 20-ps MD trajectories, sampled every 0.05 ps. Also 
plotted for comparison are the relationships proposed by Hill23 

and the curve that we have calculated from the silicalite crystal 
structure.24 All of the simulations display realistic bond 
length/angle coupling that is intermediate between the two ex­
perimental curves. 

(iii) Simulated IR Spectrum. The IR spectrum was calculated 
from the molecular dynamics trajectory by the Fourier transform 
of the total dipole correlation function.36 The dipole components 
of the system were calculated every femtosecond over 5 ps of the 
simulation. Multiple time origins were used in calculating the 
dipole correlation function, and the spectrum was then smoothed 
with a 5-point filter. The intensities obtained by this method are 
qualitative because the quantum corrections needed to give com­
pletely accurate intensities are impractical for such a large system. 

The IR spectrum was also calculated from a normal mode 
analysis (NMA) with use of the energy minimized structures 
discussed previously. For the NMA, intensities are derived from 
the change in the dipole moment of the system that is associated 
with the atomic displacements of each normal mode. The fre­
quencies calculated from the NMA are not exactly the same as 
those that are obtained from the MD. This is because the MD 
allows the actual anharmonic motion of the atoms to take place, 
whereas the NMA assumes harmonic motion. 

Table V compares the peaks in the experimental IR spectra37 

with those from the MD simulation and the NMA. The results 

(36) Berens, P. H.; Wilson, K. R. /. Chem. Phys. 1981, 74 (9), 4872-4882. 
(37) Beest, B. W. H. v.; Man, A. J. M. d.; Jackson, R. A.; Catlow, C. R. 

A.; Santen, R. A. v. Zeolites; Facts, Figures, Future 1989, 763-772. 
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Figure 10. Si-O radial distribution function. Distances in A. 

are presented for the simulations that use the Ewald summation. 
Because the spectrum depends largely on the valence potentials, 
the other treatments of the electrostatic interactions give very 
similar results. Both the MD and normal mode peaks match the 
experiment very well. The peak at =300 cm"1 that is obtained 
with the NMA cannot be reliably discerned in the MD spectrum. 

(iv) The Internal Pressure. Under the conditions of static 
equilibrium, the net force, the moments of the force, and the stress 
in a crystal must equal zero at equilibrium. In terms of the 
simulation, this implies that if the system is truly at equilibrium, 
the potential functions put no net strain on the system. The system 
should not expand or contract. A simple way to test this is to 
calculate the internal pressure of the system with use of the virial 
theorem. In MD this is done with 

P = NkbT/V-(En-F1)/3V (18) 

where P is the pressure, N is Avogadro's number, T is the tem­
perature of the simulation, V is the volume of the system, and the 
quantity in brackets represents the long-term average sum of the 
atomic positions and forces. Large, high-frequency fluctuations 
in the internal pressure require that averages be taken over rel­
atively long (20 ps or more) simulations to get an accurate rep­
resentation of the true pressures. In these simulations, the 
long-term average pressure tended toward 0, indicating that the 
system was at equilibrium. Another test of the stress on the cell 
is to subject the cell to minimizations that allow the sides of the 
cell to change. These minimizations resulted in changes of less 
than 1% in the lattice constants. 

(v) Radial Distribution Functions. Figure 9 shows the radial 
distribution function (RDF) for the Si-Si interatomic distances 
calculated from the MD trajectory. Results are presented for the 
simulation that used the Ewald summation. The rigid nature of 
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Figure 11. O-O radial distribution function. Distances in A. 

the zeolite framework and the small mean-square displacements 
of the Si give the Si-Si RDF sharply defined peaks out to the 
cutoff distance. The peaks in the RDF are all within ±0.1 A of 
the interatomic distances that are predicted by the crystal 
structure. The RDF for Si-O (Figure 10) displays a much dif­
ferent character due to the larger and more anisotropic motion 
of the O. The first peak at«1.57 A is well-defined, corresponding 
to the Si-O bond distance. At larger separation, the RDF is much 
smoother and approaches 1. The RDF for 0 - 0 (Figure 11) 
similarly shows a sharp peak at the first neighbor distance only. 

IV. Discussion 
The force field presented in this work extends the MM2 for­

malism to zeolites and has been shown to give a complete and 
accurate description of the structural and dynamic behavior of 
silicia sodalite. The force field is practical for molecular modeling 
studies of the zeolite framework and also can be used in modeling 
the interaction of adsorbed molecules and ions with the zeolite. 

The most notable previous attempts to simulate the zeolite 
lattice were those of Demontis and co-workers.1"3 Their force field 
contained only harmonic and anharmonic terms that represented 
bond stretches and angle bends. Although a valence force field 
of this nature is computationally economical for long MD simu­
lations, we feel that the more complete force field presented in 
this work is needed for several reasons. 

First, the interaction of adsorbed ions and molecules with the 
zeolite is through electrostatic and dispersion interactions. Al­
though this work does not show any strong dependence on the 
nonbonded terms, by including these terms in the current force 
field, we demonstrate that they are at least a reasonable repre­
sentation of the true nonbonded interactions in the zeolite. The 
extension of the simulation to include adsorbates is easily ac­
complished because the Lennard-Jones terms for a wide range 
of atom pairs are readily available in the MM2 force fields, from 
which our values for Si and 0 were taken. The results of modeling 
adsorbate interactions in the zeolite with these additional MM2 
nonbonded potentials will be presented in the following paper in 
this series.3' 

The inclusion of dihedral angle potentials in the force field has 
been shown necessary to maintain the correct conformational 
behavior of the lattice, primarily the positions of the O's. Because 
the dominant feature of adsorption is the interaction of the ad­
sorbed ions and/or molecules with the O's in the lattice, the 
accurate positioning of the O's is very important. Of course, the 
widespread use of torsional potentials in other valence force fields 
also argues for their importance. The coupling of the torsional 
potentials to the switching function allows them to be used in a 
computationally tractable and chemically realistic manner. This 
approach should be found valuable in other molecules that contain 
the highly flexible Si-O-Si bond, such as siloxanes. 

(38) Nicholas, J. B.; Trouw, F. R.; Hon, L. E.; Hopfinger, A. J. Submiitted 
for publication. 
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Figure 12. Calculated IR spectrum of silicalite. Inset: experimental 
spectrum. 

Despite our assumptions that the electrostatics could play an 
important part in the simulation of silica sodalite, we instead found 
little effect. The geometries of the energy-minimized structures 
were slightly improved by an increase in the dielectric constant. 
However, the differences in geometry were negligible, and on that 
basis it would be difficult to justify a reduction in the electrostatic 
interactions. The MSD's also suggest a decrease in the charges 
might be warranted; however, if the experimental MSD's are 
inflated by as little as a factor of 2, the calculated values are in 
agreement with the computed values. We do not believe that there 
is conclusive evidence for a decrease in the charges. We also 
observed little difference in structure or dynamics when the 
long-range interactions were included with the Ewald summation. 
If the long-range interactions were truly unimportant we could 
benefit by not having to use the computationally intensive Ewald 
summation in further simulations. 

There are several reasons why the electrostatics interactions 
play less of a role in the structure and dynamics of silica sodalite 
than might be expected. First, silica sodalite is a special case 
because of its cubic symmetry. Every Si or O atom is in an 
identical environment, and therefore has the same average in­
teraction with all the neighboring atoms. In addition, all the 
individual Si and O carry the same charge and the O must have 
a charge o(-qSi/2 to maintain overall charge neutrality. Thus 
the charge symmetry of the system is fixed and the only possible 
error is in the actual magnitude of the charges or the failure to 
include lone pairs or higher order terms. In zeolites of lower 
symmetry, all Si and O would not have the same charge, and this 
charge asymmetry will make the structure and dynamics much 
more sensitive to the effects of the electrostatic interactions. Of 
course, the substitution of Al in place of Si would leave the lattice 
with a net charge and cause an even greater charge asymmetry. 
Because of this high structural and charge symmetry, any errors 
in the nonbonded interactions will tend to cancel. Thus, silica 
sodalite does not present a sensitive test of the nonbonded in­
teractions in zeolites. The simulation of lower symmetry and 
Al-containing zeolites will give much more insight into the correct 
treatment of the electrostatic interactions and will be presented 
in future papers. 

Finally, each group of two oxygens and one silicon is charge 
neutral and can be thought of as a charge group.39 Electrostatic 

(39) Gunsteren, W. F. v.; Berendsen, H. J. C. Groningen Molecular Sim­
ulation (GROMOS) Library Manual; Biomos: Nijenborgh 16, Groningen, 
The Netherlands, 1987; pp 1-229. 
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interactions between neutral charge groups fall off as l/r3 rather 
than 1 /r, diminishing the strength of their long-range interactions. 
Although we choose not to calculate the electrostatic interactions 
using the charge group formalism, doing so could be an effective 
alternative to the shifted force potential in reducing the discon­
tinuity in the potential at the cutoff distance. 

Although our force field is very complete when compared to 
previous zeolite valence force fields, it contains only classic types 
of potentials that have been commonly included in molecular 
mechanics force fields. Thus, the force field is chemically realistic 
and does not contain any artificial terms that could only be used 
to improve the sodalite results. We have argued that the number 
of terms in the force field presented here is needed for accurate 
zeolite modeling. We therefore do not believe that the force field 
represents an overfitting to the experimental data of silica sodalite, 
which would result in a force field that reproduces silica sodalite 
with high accuracy, but models other zeolites poorly. The veri­
fication of these claims is the demonstration of the transferability 
of the force field to other systems. In addition, as a simple matter 
of convenience, we would like to be able to simulate other zeolites 
with minimal or no changes in the force field. Figure 12 compares 
the experimental and theoretical IR spectra of silicalite.40 The 
theoretical spectrum was calculated by using the force field 
presented here and is in excellent agreement with experiment. The 
transferability of the force field to silicalite is persuasive evidence 
that the valence force field is valid for silicate zeolites in general. 

(40) Nicholas, J. B.; Mertz, J.; Trouw, F. R.; Hon, L. E.; Hopfinger, A. 
J. Submitted Tor publication. 

V. Conclusion 
An accurate force field for the modeling of silicate zeolites has 

been presented. The force filed contains terms that represent both 
the valence and nonbonded interactions of the zeolite. The force 
field has been demonstrated to reproduce the structure and dy­
namics of silica sodalite with use of energy minimization, normal 
mode analysis, and molecular dynamics techniques. The trans­
ferability of the force field to silicalite has been shown, and the 
extension of the force field to the study of the interaction of 
adsorbates with the lattice is easily accomplished. The derivation 
of additional force field parameters that will allow the inclusion 
of Al, P, and other metals in the framework is currently being 
pursued and will be reported in subsequent papers in this series. 
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Abstract: The catalytic reaction of lactate dehydrogenase (LDH) is examined by microscopic simulations for the general class 
of hydride-transfer reactions in enzymes. The free energy surfaces for the enzymatic reaction and the corresponding reference 
reaction in solution is evaluated by the empirical valence bond (EVB) method combined with a free energy perturbation method. 
The resulting activation barriers (Ag*) are then analyzed in terms of the corresponding solvent reorganization energies (X8) 
by using linear free energy type formulation but with microscopically deduced parameters. It is found that X5 is smaller in 
the enzyme than in solutions and that the reduction of Ag* by the enzyme can be correlated with the corresponding reduction 
of Xj. This result, which can be formulated by a Marcus-type relationship, is not, however, reproduced by macroscopic models 
that consider active sites as low dielectric regions. In fact, nonpolar sites would reduce X5 but at the same time increase rather 
than decrease Ag* for charge-transfer reactions. Apparently, enzymes accelerate reactions by using very polar sites with preoriented 
dipoles. This means that, in contrast to the customary case in homogeneous solutions, where Ag* can be reduced in nonpolar 
solvents due to the reduction in X,, enzymes can reduce Ag* by having a small X8 in a polar environment. This rather complicated 
situation requires one to evaluate X, by microscopic models rather than to estimate it by macroscopic approaches. However, 
once X1 is known, it can provide a useful tool for correlating enzyme rate with the effect of different mutations. 

1. Introduction 
Hydride-transfer processes play an important role in many 

enzymatic reactions including dihydrofolate reductase,1 liver 
alcohol dehydrogenase,2 and lactate dehydrogenase.3 This class 
of reactions can provide a useful insight about the nature of 
charge-transfer enzymatic reactions. For example, one would like 
to understand the requirements for efficient catalysis of charge-
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transfer reactions in general and hydride transfer in particular. 
Obviously this problem is not new, and previous studies of 
charge-transfer reactions in enzymes have indicated that enzymes 
catalyze such reactions by providing electrostatic complementarity 
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